
            

PAPER • OPEN ACCESS

Analysis of nonclassical features in a coupled macroscopic binary
system
To cite this article: Byoung S Ham 2020 New J. Phys. 22 123043

 

View the article online for updates and enhancements.

This content was downloaded from IP address 210.107.188.114 on 30/12/2020 at 08:20

https://doi.org/10.1088/1367-2630/abd3c6


New J. Phys. 22 (2020) 123043 https://doi.org/10.1088/1367-2630/abd3c6

OPEN ACCESS

RECEIVED

28 July 2020

REVISED

14 December 2020

ACCEPTED FOR PUBLICATION

15 December 2020

PUBLISHED

30 December 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Analysis of nonclassical features in a coupled macroscopic
binary system

Byoung S Ham∗

Center for Photon Information Processing, School of Electrical Engineering and Computer Science, Gwangju Institute of Science and
Technology, 123 Chumdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea

∗ Author to whom any correspondence should be addressed.

E-mail: bham@gist.ac.kr

Keywords: quantum optics, quantum mechanics, coherence optics, photonic de Broglie waves, coherence de Broglie waves

Supplementary material for this article is available online

Abstract
Nonclassical phenomena of quantum mechanics such as anticorrelation and photonic de Broglie
waves (PBWs) have been recently understood as a special case of coherence optics with a particular
phase relation between orthogonal bases composing a classical system. Such a macroscopic
understanding of nonclassical features has also been confirmed experimentally for a coherence
version of PBWs in a doubly-coupled Mach–Zehnder interferometer (MZI). Here, a
multi-coupled MZI system is analyzed and discussed to obtain a general understanding of the
nonclassical feature using tensor products of binary bases of a classical system. This analysis should
intrigue a fundamental question on quantumness or nonclassicality limited to a microscopic world
of a single photon or a single particle.

1. Introduction

Quantum superposition is the bedrock of not only coherence optics of interference and diffraction [1], but
also quantum mechanics of nonclassical features such as anticorrelation [2–10], Franson-type nonlocal
correlation [11–15], photonic de Broglie waves (PBS) [16–20], and entangled photon/spin pairs [21, 22]. A
typical example of superposition is a Young’s double slit or a Mach-Zenhder interferometer (MZI), where
such coherence optics has been applied for both macroscopic (coherent lights) [1] and microscopic (single
particles) regimes [11–15, 23]. The key concept of quantum superposition is indistinguishability between
bipartite entities in a coherence regime [24] as shown for a single photon itself via self-interference in a
microscopic world [23]. For this indistinguishability, phase coherence plays a key role for quantum
superposition, resulting in the uncertainty principle. Unlike the energy-time bin uncertainty relation in the
microscopic world as a particle nature of quantum mechanics [2–21], a phase relation has been recently
understood as the key concept of quantumness or nonclassicality [25], where such quantumness can also be
induced by macroscopic coherence optics [26–29]. Here, the phase relation between bipartite entities
implies the origin of the nonclassical features, where the bipartite-based quantumness can be extended into
a macroscopic world such as for Schrodinger’s cat [30–35].

Recently, a novel interpretation has been applied for the Hong–Ou–Mandel (HOM) effect of photon
bunching or anticorrelation to understand the fundamental physics of quantumness [25]. Unlike
conventional understanding of the particle nature in quantum mechanics based on the energy-time bin
relation [2–22], a simple theory of coherence optics has been successful to induce the same results in a
classical system, where a relative phase between the bipartite is the key concept for the quantum feature of
anticorrelation [25–29]. In this theory, the so-called HOM dip is supposed to be sinusoidally modulated as
a function of the phase difference between two input photons within coherence time, where the
conventional post-measurements are rather a minor process due to much delicate or sensitive phase effect
on coherence as presented in Franson-type nonlocal correlation [11]. The Franson-type nonlocal
correlation between remote bipartite entities has also been understood in terms of coupled coherence
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Figure 1. A q-folded MZI system. The phase ϕ has two bases, ϕj ∈ {0,π}. The phase ψ satisfies ψ ∈ {0,π}. L, laser; M, mirror;
BS, beam splitter; ψ, control phase; D, detector; E0, input field amplitude; EC and ED, output field amplitudes.

physics between noninteracting MZIs via coincidence detection [27]. Finally, a coherence version of PBW
[28] has been proposed recently under the name of coherence de Broglie waves (CBW) in an
asynchronously coupled double Mach-Zehnder interferometer (ACD-MZI) system to demonstrate
coherence optics-based quantum features applicable to quantum sensing and quantum metrology [36–43].

Very recently, CBW has been experimentally demonstrated in a pure classical regime of the ACD-MZI
[29], where MZI has been implemented as a quantum device as discussed already for anticorrelation [25]
and Franson-type nonlocal correlation [27]. Here, a general analysis of CBW is presented to give a better
understanding of how such a nonclassical feature can be created in a pure classical system of MZIs. For this,
quantum superposition between two paths of an MZI is investigated in a coupled system, where higher
order phase-basis creation plays a major role. Here, we demonstrate that higher order phase bases are the
origin of quantum features in CBW. This quantum feature is generated from the asymmetric coupling
among MZIs which cannot be obtained by any classical means such as many-wave interference in cavity
optics. Furthermore, a cavity CBW [37] is also investigated for potential applications of coherence quantum
sensing such as inertial navigation [38, 39] and quantum lithography [40–43]. Here, the cavity CBW is also
compared with an optical cavity to present their difference in fundamental physics.

2. Results

2.1. Analytical approach
Figure 1 shows a schematic of the coupled ACD-MZI for CBWs in reference [28]. Here, ACD is an
asymmetrical phase relation between consecutive MZIs as indicated by the position of ϕ, where the phase ϕ
represents either 0 or π phase shift between two paths of each MZI. To satisfy multiply coupled MZIs, the
subscript q should be greater than one, which is a classical limit. For the phase basis of a single MZI, we
redefine it from {0,π} to {0,ϕ} for simplicity. The multiply coupled MZI system in figure 1 is analyzed
with an q-ordered tensor matrix notation of the phase bases for ψ = 0, where the π-basis of ψ induces a
π-phase shift in the path superposition, resulting in breakage of the asymmetric coupling [28]:

In equation (1), q stands for the order of each MZI. Thus, the output of the q-coupled MZI system of
figure 1 has 2q combinations with

(
1 + q

)
phase bases in terms of ϕ j(j = 0, 1, 2, . . . , q). Because the phase ϕ

applies to the exponent of harmonic waves, the output field’s phase can be represented by eiqϕj (j = 0, 1, 2,
. . . , q). In other words, the output phase basis varies along with q, where the fundamental ϕ bases are
uniformly synchronized for all MZIs. Thus, the phase of the ϕq basis in equation (1) is represented by
ϕq =

(
π/q

)
m, where m � q. ⎡

⎢⎢⎢⎣
0
ϕ
...
ϕq

⎤
⎥⎥⎥⎦

qx1

=

[
0
ϕ

]
1

⊗
[

0
ϕ

]
2

. . .⊗
[

0
ϕ

]
q

. (1)

To understand the coupled MZI system of figure 1, equation (1) is investigated with ordered bases of ϕq

as follows:
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(a) For q = 2 in a doubly coupled MZI

[
0
ϕ

]
1

⊗
[

0
ϕ

]
2

=

⎡
⎢⎢⎣

0
ϕ

ϕ

ϕ2

⎤
⎥⎥⎦ . (2)

In a doubly coupled MZI system, the phase of the qth ordered basis is simply ϕ/q due to superposition
in the output fields as

(
eiϕ

)q
. Thus, equation (2) implies CBW [28], whose eigenstates are ϕ2, ϕ, and 0.

We now define the basic building block of the ACD-MZI scheme for q = 2 in figure 1 (see both blue and
green boxes):

[
EA

EB

]
= [−M] [Ψ] [M]

[
E0

0

]
,

=
1

4

[ (
1 − e−iϕ

) (
1 − eiϕ

)
− eiψ

(
1 + e−iϕ

) (
1 + eiϕ

)
i
[(

1 − e−iϕ
) (

1 + eiϕ
)
− eiψ

(
1 − eiϕ

) (
1 + e−iϕ

)]
i
[(

1 − eiϕ
) (

1 + e−iϕ
)
− eiψ

(
1 − e−iϕ

) (
1 + eiϕ

)]
−
(

1 + e−iϕ
) (

1 + eiϕ
)
+ eiψ

(
1 − e−iϕ

) (
1 − eiϕ

)
][

E0

0

]
,

(3)

where [−M]= [BS] [−ϕ] [BS], [M]= [BS] [ϕ] [BS], [BS]= 1√
2

[
1 i
i 1

]
, [ϕ]=

[
1 0
0 eiϕ

]
, [−ϕ] =

[
1 0
0 e−iϕ

]
,

and [Ψ] =

[
1 0
0 eiψ

]
. Because CBW in figure 1 is based on coherence optics, the input field E0 is a classical

field of any laser light. To solve equation (3), two different values of the ψ-bases are separately considered:

(a) For ψ = 0,
Equation (3) is rewritten as:

[
EA

EB

]
= (−1)

[
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

] [
E0

0

]
, (4)

The corresponding intensities are as follows, respectively:

IA =
1

2
[1 + cos(2ϕ)] I0, (5)

IB =
1

2
[1 − cos(2ϕ)] I0, (6)

where Ij = EjE∗
j . equations (5) and (6) show the lowest order of CBW in ACD-MZI [28, 29]. To briefly

explain CBW, the basic building block in figure 1 is for q = 2 corresponding to n = 1, where n
represents the number of the basic building blocks of ACD-MZI. For n � 1, the following relation is
obtained straightforwardly from equation (4) by matrix multiplications:

[
EC

ED

]n

= (−1)n

[
cos(nϕ) sin(nϕ)
− sin(nϕ) cos(nϕ)

] [
E0

0

]
. (7)

Thus, the phase resolution of the output fields linearly increases with respect to n. Without doubt, this
kind of resolution enhancement can be obtained from multi-wave interference in classical cavity
physics without superposition among each bipartite system of MZIs in figure 1 (discussed in figures 2
and 3). In other words, CBW in equation (7) has an effect of PBS, while the classical cavity optics does
not (discussed in figure 3). The corresponding intensities are as follows, respectively:

(IC)n = I0 cos2 nϕ, (8)

(ID)n = I0 sin2 nϕ. (9)

(b) For ψ = π [
EC

ED

]
=

[
1 0
0 1

] [
E0

0

]
. (10)

Equation (10) is for the case of unconditionally secured classical key distribution (USCKD) as an
identity relation between the input and output [26]. This identity relation is the same as the
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Figure 2. Numerical calculations for equation (7) for figure 1. n = 1 (blue), n = 2 (green), n = 3 (red), and n = 4 (cyan). n =
2q.

Figure 3. Cavity CBW. (a) A schematic of the cavity CBW. (b) and (c) Numerical calculations for (a). (d) Numerical calculations
for an optical cavity as a classical limit. L, laser; I, isolator; η, reflection coefficient; M, mirror; BS, beam splitter; α/β: optical
fields; n (=2q): number of ACD-MZI in figure 1. Iα/Iβ : outputs of MZI1. IA/IB: outputs for n = 500. η = 0.99.

ϕ-symmetric case with ψ = 0 [see section 1 of the supplementary information (https://stacks.iop.org/
NJP/22/123043/mmedia)]. For the tensor notation in equations (2) and (10) is represented as:

[
0
ϕ

]
1

⊗
[

0
−ϕ

]
2

=

⎡
⎢⎢⎣

0
−ϕ

ϕ
0

⎤
⎥⎥⎦ , (11)

where the ‘−’ sign of ϕ in equation (11) is due to the π-phase shift by the control phase ψ in figure 1.
Like equations (10) and (11) also shows the identity relation with the same phase bases. Here, the sign
in equations (4) and (11) does not alter the intensity. Although two different cases of (a) and (b) result
in distinctly different outputs, they root in the same physics of nonclassical CBW, but represent
quantum and classical features, respectively, where the identity relation is an extreme case of CBW
without superposition between MZIs [29]; this will be discussed in figure 2.

To investigate ACD-MZI in figure 1 for the ordered phase bases, equation (2) needs to be redefined
as: ⎡

⎢⎢⎣
0
ϕ

ϕ

ϕ2

⎤
⎥⎥⎦→ (1, 2, 1) , (12)

where each element in the parenthesis of (1, 2, 1) represents corresponding coefficient of the ordered
phase basis of

(
ϕ0,ϕ1,ϕ2

)
in terms of probability. From the reference bases of 0 and π in a single MZI,

equation (12) shows three possible bases, where ϕ1 indicates the reference basis. Because the phase
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Table 1. The number of MZI ‘q’ vs the phase order ‘ϕq’ of the output fields in
equation (1).

q
ϕq

0 1 2 3 4 5 6 7

2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

basis ϕ2 relates with ei2q, ϕ2 =
(
π/2

)
m (m � 2) is achieved. Thus, the phase basis set of ϕ2 is

represented as ϕ2 ∈
{

0, π
2 ,π

}
. As a result, the qth ordered phase basis is represented as:

ϕq =
(
π/q

)
m (m � q) , (13)

where m � q. Thus, the phase basis in a coupled system is given:

ϕq ∈
{

0,
π

q
,

2π

q
, . . . ,

(
q − 1

)
π

q
,π

}
, (14)

where, the number of phase bases for q-coupled MZIs is q + 1. Here, it should be noted that the lowest
phase basis π/q represents the fundamental basis of the q-coupled MZI system. The general notation for
coefficients of the phase bases in equation (14) for higher q represents the Pascal’s triangle as shown in
table 1 (see section 2 of the supplementary information). Here, the lowest phase basis represents CBW in an
asymmetric structure of MZIs of figure 1, in which CBW corresponds to a N00N state in the particle nature
of entangled photons.

For the qth ordered phase basis of ϕq, the output field’s intensity has a sinusoidal oscillation in the form
of eiqϕ. Thus, the phase basis of ϕq =

(
π/q

)
m is successfully summarized in table 1. The increased phase

bases, of course, result in a q-times enhanced phase resolution applicable to quantum sensing. As a result,
the effective wavelength of CBW is λCBW = λ0/2q, corresponding to that of PBW in λPBW = λ0/4N, where
N is the number of entangled photons on a BS. The 1/2 ratio between CBW and PBW is due to the g(1)

correlation in CBW over the g(2) (intensity) correlation in PBW. Considering the g(2) (intensity) correlation
in CBW, q functions as N. Thus, the coupling effect of a tensor matrix in equation (2) has been
demonstrated for the qϕ phase oscillation, resulting in a q-times enhanced phase resolution in the output
fields [17–20, 28, 29, 35, 36]. On the contrary, the benefit of g(2) in the coincidence detection for entangled
photon pairs based on the probabilistic nature of photons, the present case of CBW is deterministic based
on the wave nature of photons, resulting in no need of the coincidence detection due to the long coherence
time by definition of the wave nature and high signal to noise ratio.

2.2. Numerical approach
Figure 2 shows numerical calculations for EC for a few different n (=2q), where n is the number of basic
building block of MZIs satisfying ACD-MZI in figure 1 for ψ = 0. As n increases, the fundamental phase(
π/q

)
of ϕq inversely proportional to q as shown in figure 2 (see the colored dots). Here, the fundamental

basis phase ϕq is obtained from the maximum output intensity. Due to alternative sign modulations in
equation (7), the superposed fields for all EC and ED becomes zero, except ϕ = ±π in figure 2(a) (see
section 3 of the supplementary information). Thus, the tensor analysis in the coupled MZI system strongly
supports the origin of nonclassicality in terms of newly generated phase bases in eiϕq harmonic waves. This
quantum feature of λCBW = λ0/2q is created from purely coherence optics via macroscopic coupling of the
path superposition among MZIs in figure 1.

Instead of the serial connection of the two-mode MZIs in figure 1 for CBW as denoted in table 1, the
recursive structure of figure 1 can be obtained for a cavity CBW. Figure 3(a) shows a schematic of a cavity
CBW, where the asymmetric phase relation between consecutive MZIs are satisfied for all recursive fields.
Figure 3(b) shows the corresponding numerical calculations as functions of ϕ and n, where the reflection
coefficient η is set at 0.99. The control phase ψ is set to zero automatically and precisely due to the shared
paths located at both ends of the bow-tie structure. The alternative sign change among the ordered fields’
amplitudes of EC in equation (7) results in a complete cancellation of the output fields due to superposition
for all phases except for ϕ = ±π for IC if n � 1 as mentioned in figure 2 (see figure 3(c)). Even with
reflectance R (= η2) of the output coupler, the gradual intensity decrease in the bounced fields, however,
does not affect the overall fields’ cancellation (see section 3 of the supplementary information). Unlike EC,
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Figure 4. Numerical calculation of CBW in figure 1 as functions of ϕ and ψ. R = 0.9. The left (right) columns are for IC(ID) in
the unit of I0. (a), (b) For n = 10. (c), (d) For n = 30. (e), (f) For n = 50. (g), (h) For the extension of the dotted circle in (e) and
(f).

however, ED experiences a destructive interference at ϕ = π, resulting in zero in intensity [see the red curve
in figure 3(c)], where these interference patterns repeat at ϕ = ± (2n − 1)π [28].

The intensity and phase resolution of IC and ID at ϕ = ±π are higher than the classical counterpart as
shown in figure 3(d), where figure 3(d) is for a typical Fabry–Perot (FP) interferometer as a reference (see
chapter 8 of reference [1]). Here, it should be noted that the physics of enhanced phase resolution in
figures 3(c) and (d) is completely different from each other, where the classical one in figure 3(d) is due to
the superposition of reflected fields in FP, in which each reflected field has a different phase due to different
cavity round-trip distance for the same wavelength [1]. On the contrary, the enhanced phase resolution in
figure 3(c) is due the quantum feature of CBWs based on equations (7) and (13). Figure 3(a) has already
been applied for CBW Sagnac interferometer in a modified scheme [37], where the highly sensitive phase
resolution can be used for inertial navigation without the help of the global positioning system.

The spectrum of IC in figure 3(c) is quite different from that of an optical cavity FP interferometer,
where both constructive and destructive interferences occur at ϕ = ±π with a modulus of 2π. On the
contrary, the FP interferometer shows constructive interference at ϕ = 2pπ(p = 0, 1, 2 . . .) as shown in
figure 3(d), whose spectral width is proportional to η-based finesse. Although both cavity CBW and FP are
based on many-wave interference, the origin of CBW is nonclassical with λCBW(= λ0

2q m) via asymmetric
coupling among MZIs, while FP is given by the cavity length-dependent resonance condition. Thus, cavity
CBWs interfere with self-generated q-dependent wavelengths in the cavity, while FP induces no change in
the input frequency of light. For a fixed η, the spectral width of IC in figure 3(c) is 67% narrower than that
of FP in figure 3(d). A high-resolution spectrometer based on figure 3 can also be implemented using
silicon waveguides of the serial MZI structure of figure 1 [7, 44, 45].
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Figure 4 shows numerical calculations for the output fields as functions of ϕ and ψ of ACD-MZIs Both
phases have the same modulus of 2π. From the top to the bottom the number n increases. As mentioned
above the control phase ψ functions as a toggle switch between CBW and USCKD depending on the choice
of its basis. The phase sensitivity increases as n increases. Figures 4(g) and (h) extensions of figures 4(e) and
(f), where the width of 0.02π is confirmed in both ϕ and ψ. As shown in the lower right corner, the output
intensity ID is quite sensitive to the phase variance of both ϕ and ψ. As mentioned above in figure 3, the
round trip number n in the cavity CBW is much bigger than 50 even with R = 0.9. Thus, the CBW
sensitivity is much higher than that of optical cavity relying on finesse [1]. Most of all, the variance of ψ is
zero due to the shared path in the bow-tie structure of figure 3 in an ideal condition. The phase noise of ϕ
can also be maintained to be nearly zero such as in the silicon waveguide structure whose refractive index
varies by temperature only [45].

3. Discussion

Unlike conventional nonclassical feature based on the particle nature of photons such as N00N state-based
PBW, CBW is based on multi-superposition between macroscopic MZIs via an asymmetric coupling
method. As is well known, coherence as a wave nature does rather rely on ‘phase’ than ‘photon number’
according to the Heisenberg’s uncertainty principle. Compared with that the photon loss is critical to PBW
due to the particle nature of individual photons, the diminution of nonclassical feature in CBW is due
mostly to coherence loss between MZIs via phase variation. In other words, the phase uncertainty in ϕ and
ψ is critical to maintain quantumness of the present CBW system as shown in figure 4.

4. Conclusion

In conclusion, a nonclassical feature of CBWs is analyzed using tensor matrices of binary basis systems of
MZI. Analyzing a coupled MZI system using both phase basis tensor matrices and numerical calculations,
the origin of the nonclassical properties of CBWs was demonstrated for the nth order phase basis whose
phase resolution is n-times enhanced compared with the classical diffraction limit. The number of phase
bases in an ACD-MZI system was also demonstrated and resulted in Pascal’s triangle. For potential
applications of CBWs, cavity CBWs were also analyzed for enhanced phase resolution even with low finesse
cavity. Although the output mode looks similar to the conventional optical cavity mode, its physics is
completely different, satisfying nonclassical physics. For potential applications, silicon photonics may be a
good tool to implement cavity CBWs with even low finesse.
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