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A Sagnac interferometer has been a powerful tool for gyroscope, spectroscopy, and navigation based on the Sagnac effects between
counterpropagating twin fields in a closed loop, whose difference phase is caused by Einstein’s special relativity. Here, a
nonclassical version of a Sagnac interferometer is presented using completely different physics of coherence de Broglie waves
(CBW) in a cavity, where CBW is a nonclassical feature overcoming the standard quantum limit governed by classical physics.

1. Introduction

Measurement is a physical process of a physical quantity
such as the intensity and phase of an electromagnetic (opti-
cal) field. The accuracy of measurement is quantified by sta-
tistical errors (standard deviation), where the error can be
reduced via the number of trials since it is proportional to
1/+/N [1]. This is the fundamental law of classical physics
governed by Poisson statistics, where the classicality repre-
sents the independence among trials or probe photons [2].
If there is quantum correlation among the trials or the probe
photons, however, the statistical error can be further reduced
proportionally to 1/N, where the square root factor enhance-
ment in measurement sensitivity is due to the quantum gain
originating in quantum correlation, which cannot be
obtained through classical means [3-5]. Such a quantum
correlation can be represented by nonclassical features as
demonstrated by entangled photon pairs [6-8], squeezed
light [9], and Fock states [10].

The direct proof of quantum gain for phase resolution
has been verified by photonic de Broglie waves (PBWs),
where the phase resolution is enhanced by N [11-13]. Thus,
the phase resolution in PBWs is bounded by the Heisenberg
limit beating the classical standard quantum limit [1-17].
Both parameters of measurement sensitivity and phase reso-
lution are fundamental resources of quantum sensing and
quantum metrology [4, 5]. To increase N, higher order
entangled photon pairs, the so-called NOON states, are
needed for PBWs. Due to the indeterminacy and limitation

of higher-order NOON state generation, however, the imple-
mentation of quantum metrology and quantum sensing for
frequency standards [14], imaging [15], spectroscopy [16],
and lithography [17] has been severely limited. Here, a novel
method of quantum sensing technology is presented for
coherence de Broglie waves (CBWs) [18, 19], where CBWs
are applied for a quantum (nonclassical) Sagnac interferom-
eter [20, 21]. As discussed in refs. [18, 19], CBWs are a
coherence version of PBWs according to the wave-particle
duality of quantum mechanics.

The fundamental limit of phase resolution in classical
physics is governed by the Rayleigh criterion, where the
maximum resolution of two-wave interference is the half
wavelength (A,/2) of the probe light. Using PBW, however,
the classical limit can be overcome owing to the nonclassical
features of entanglement or squeezing, in which the wave-
length A, of PBW is effectively shortened nonclassically by
a factor of number of paired photons, N [11-13]: Az = A,/
N. For example, if N =2 is provided for the two-path inter-
ference, the phase enhancement becomes 2 compared with
the diffraction limit. This quantum gain of PBW is governed
by Heisenberg limit in terms of measurement sensitivity and
phase resolution [2]. As a result, the degree of nonclassicality
in PBWs is determined by how many entangled photons are
involved or how many measurements are performed. The
resulting quantum enhancement in phase resolution using
high N PBWs has been well-demonstrated [2, 11-13, 17].
Due to extreme difficulties of high N PBWs, however, the
implementation of quantum metrology and quantum


https://orcid.org/0000-0003-3609-8508
https://doi.org/10.34133/2021/9862831

Advanced Devices & Instrumentation

-2

Egy

-¢/2
0tE 4

/ Mirror

IZ Beam Splitter (50/50)

0 PZT

FIGURE 1: A schematic of a unit CBW. L: laser, PZT: piezoelectric transducer.

sensing is extremely challenging [13]. To overcome this lim-
itation of PBW, CBW has been proposed recently, where
CBW is based on the wave nature of a photon, satisfying
complementarity theory or wave-particle duality of quantum
mechanics.

Since the first demonstration in 1913 [20], the Sagnac
interferometer (SI) has been implemented for optical [22]
and matter-wave [23] interferometry as well as atomic spec-
troscopy [24] and gravitational wave detection [25]. Regard-
ing the diffraction limit of two-wave interference, Sagnac
interference shows much higher resolution, but still limited
by the classical physics of Raleigh criterion, where the
enhanced resolution is governed by many-wave interference
in an optical cavity [26]. In that sense, PBW cannot beat the
Sagnac interferometer even with highest N achieved so far.
Unlike PBW based on the particle nature of a photon,
CBW based on the wave nature, however, can beat the Sag-
nac interferometer under the same cavity condition. In the
present paper, a novel scheme of CBW-Sagnac interferome-
ter is presented for quantum gain beating the standard reso-
lution in a Fabry-Perot interferometer for a conventional
Sagnac interferometer. For this, the fundamental physics of
CBW [18] is briefly reviewed in Figure 1, and its first appli-
cation to the novel scheme of a quantum Sagnac interferom-
eter is proposed in Figure 2. In Figures 3 and 4, detailed
numerical calculations are presented with analytical solu-
tions for Figure 2.

2. Materials and Methods

Figure 1 shows a schematic of CBW based on the wave
nature of photons for m = 1, where m is the number of the
unit CBW composed of asymmetric MZIs (C and W)
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FIGURE 2: A schematic of a CBW Sagnac interferometer. Q is the
rotation speed causing an opposite phase shift pair to both
outbound and inbound light fields.

coupled by a dummy MZI (B). Unlike a conventional quan-
tum measurement scheme using entangled bipartite systems
[2-17], CBW couples an asymmetric MZI pair (C and W) by
a dummy MZI (B). The input field E, does not have to be
either a single photon or an entangled pair but instead a
commercially available bright laser light. As proved already,
a single input MZI can satisty the same quantum character-
istics of anticorrelation, the so-called a Hong-Ou-Mandel
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FIGURE 3: A cavity CBW Sagnac interferometer. (a) Each ordered field (E, )™ for the output A in (a): blue, m = 1; red, m = 2; green, m = 3; m
represents number of the round trips in the cavity. The arrows indicate common phase bases resulting in constructive interference. (b) All
ordered components of (E,)™. (c) Intensity I . (d) Individual (E,)™ for (c). Blue: m = 1; red: m = 10; green: m = 50. (e) Details of amplitude

sum for (c). (f) Details of output intensities.

dip, in an interferometric system [27]. By coupling such
identical systems (C and W) via a dummy MZI (B), nonclas-
sical feature of CBW is generated [18, 19]. As already inves-
tigated for a BS [28], the basic physics of the CBW arises
from coupled quantum superposition between two identical
MZIs via a phase control for an asymmetric coupling (see
the opposite ¢s between C and W in Figure 1) [18]. This
asymmetric coupling is like spin coupling in EPR based on
the particle nature of photons [29]. Such quantum correla-
tion for entanglement generation has already been demon-
strated for an independently trapped ion pair [30].

2.1. Coherence de Broglie Waves. In Figure 1, the asymmetric
phase coupling between C and W represents for the Sagnac
effect in a cavity SI [21], in which counterpropagating lights
induce an opposite phase pair in both MZIs due to the rela-
tivistic time delay +At: At =4AQ/c%; A is the area of SI's

closed loop; and (2 is the rotation rate (see Figure 2). Under
this antiphase condition, the output fields & and f3 in the first
MZI (C) result in a typical interferometric fringe as a func-
tion of At —induced ¢. The output fields (« and f5) enter
the second MZI (W) via a dummy MZI (B), resulting in
the final outputs A and B. The asymmetric configuration
between C and W, however, results in a nonclassical feature
of CBW at Ay = Ay/4m [18]. As already proved, such a
(doubly) enhanced phase resolution in CBW is equivalent
to PBW [11-13].

The followings are general matrix representations for
Figure 1:
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FIGURE 4: Fabry-Perot interferometer versus cavity CBW. (a) and (b) Output intensities from a Fabry-Perot interferometer. (c) and (d)
Output intensities from cavity CBW. For all, green (r =0.9); red (r = 0.99); blue (r =0.999). All figures are color matched. Intensities are

normalized in (c) and (d) for comparison purposes, otherwise 41,,.

Ey Ey
[ } = [BS][¢][BS][y][BS][-¢][BS] [ o }
. (1-cos @) — (1 + cos p) —sin (1 +¢")

2 { sin (1 +¢¥)

(2)
1

where [BS] = 1/\/5[ z i], [p] =¥ Ll) e(;] , and, [y]

0 e¥
tion (available here)). Thus, the corresponding light intensi-
ties are, respectively, as follows for y = 0:

1 0
= [ 1 (see section 1 of the Supplementary Informa-

I
I,=201- ,
o= 2(1-cosg)
I
Iﬁ=5(1+cosq)),
(3)
I
IA=E(1+c032go),
I
IB=E(1—COS2(p),

where I, is the intensity of E,. The generalized CBW outputs
for the m™ order are as follows, where the m™ order is a m
-time repeated scheme of Figure 1 for Figure 2 (see section
2 of the Supplementary Information):

1
~(1 +cos @) + € (1 - cos ‘P):| L):|)

1
IXn) = 50 [1+(-1)" cos mg), (4)
m 1
Iy ) = EO [1 + (—1)erl cos mq)]. (5)

2.2. Cavity CBW for QSI. Figure 2 is the proposed cavity
CBW for a quantum SI (QSI), whose one round trip is
equivalent to Figure 1. Due to the relativistic speeds for the
outbound field pair propagating along the upper (U) and
lower (L) paths of MZI, the oppositely phase-shifted pair is
caused: Sagnac effects [21]. For the inbound fields, the phase
shift in each path is opposite to that of the outbound, respec-
tively. Here, the inbound fields represent the reflected ones
by the right upper corner mirrors (see W in Figure 1). The
condition of ¥ =0 in Figure 1 is satisfied by the symmetric
structure of both end regions between BS and mirrors of
high reflection beam splitters (see the green). Unlike each-
round outputs determined by equations (4) and (5), the out-
puts A and B in Figure 2 result from amplitude superposi-
tion as in a Fabry-Perot interferometer (FPI). Compared
with that the field superposition in FPI is for exactly the
same wavelength A, over infinite discrete phase shifts, the
outputs of Figure 2 are for discrete Acpy (= Ay/4m) for the
same phase shift.

3. Results

For the cavity CBW in Figure 2, equation (2) is rewritten for
discrete CBWs as follows for ¢ =0 (see sections 2 and 3 of
the Supplementary Information):
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(m)
E, _ (—l)mTr(’”’l)EO cos (mg)
Eg —sin (mg)

sin (me) | | 1
cos (me) | |0 ,
where T is the transmittance and r is the reflectance coeffi-
cient of the output coupler (high reflection BSs). The super-
script m is the order defined by the number of round trips of

the fields. Thus, the following ordered output fields are
obtained from equation (6):

(E)" = (-1)"Tr""VE, cos (mgp), (7)

(Ep)™ = (-1)™' TrmVE, sin (mg). (8)

Figure 3 shows numerical calculations of equations (7)
and (8) for Figure 2. If the phase shift is ¢ =0 (or 2nm) in
Figure 2 for Q =0, ie., me =2nm, each even ordered field
is perfectly cancelled out by each odd ordered one, respec-
tively, due to the prefactor of (~1)" and (~1)"*'. Thus,
the sum of all m-ordered amplitudes in each field of equa-
tions (7) and (8) becomes zero (see Figure 3(a)). If m > 1
for r ~ 1, the higher order components of (E,)™ are located
nearly everywhere uniformly but discretely throughout the
phase axis due to the m™" factor in ¢, (see Figure 3(b)).
Each (E,)"*' has a sign flip with respect to each (E,)”,
resulting in complete cancellation due to the destructive
interference for all m, except for ¢ =+m as shown in
Figures 3(b) and 3(c) (discussed below). For the application
to QSI in Figure 2, ¢ =7 is preset for Q=0.

On the contrary, if the phase shift is 7 in the coupled
MZI (C and W in Figure 1) during the round trip in the cav-
ity, i.e., me = (2n + 1)7, equation (7) results in constructive
interference due to the compensation between the cosine
terms and the prefactors for all m™ components (see the
blue arrow in Figure 3(a)). Thus, all components of (E,)"
interfere constructively at ¢ = (2n+ 1) (see Figures 3(b)-
3(d)). This interference mechanism in the cavity CBW SI
is obviously different from the conventional FP-based SI,
whose constructive interference occurs at 2nm (discussed in
Figure 4).

For the details of the constructive interference in the cav-
ity CBW SI, set n=0 and consider equation (7) for ¢, =
n/m. For the first order m=1, (E,)"" = —(-1)'Tr°E, =
TE, at ¢,, = (see the blue curve in Figure 3(a)). For the
second-order m =2, (E,)"™> = —(~1)’Tr'E, = ~TrE, at ¢,
=71/2 (see the red curve and the red arrow). There is a sign
flip whenever the phase ¢, is an even multiple. If the phase
¢, is an odd multiple, there is no sign flip in (E,)". Thus,
(E,)"™* flips over to TrE, at ¢ = 7 due to the even multiple
for the phase, i.e., ¢ = 2¢,, (see the blue arrow). For the third
order, m=3, (E4)"™ =~(~1)’Tr?Ey = Tr?E,, at ¢y, = 1/3
(see the green curve and the green arrow). Thus, (E,)"™
has no sign flip at ¢ =7 due to an odd multiple, resulting
in Tr’E, at ¢ =3¢,, (see the blue arrow). For the fourth

order, m=4, (E,)"*=—(-1)*TrE, = -TrE, is satisfied

at @,, =m/4 (see the dotted curve and the black arrow).
Thus, (E,)"™* is flipped and becomes Tr°E, at ¢ =7 due
to the even multiple, i.e., ¢ = 4¢,, (see the blue arrow).

For the infinite series of (E,)™ and (Ez)™ in equations
(7) and (8) at @ = (2n + 1), a general solution for the ampli-
tude sum, E, and Ej in Figure 2, is obtained analytically as
follows (see section 4 of the Supplementary Information):

E,=TE, )y r"™™),
m=1 (9)
Ey=0,

where the prefactor (—1)" is cancelled out by the accumu-
lated phase ¢™ in each round trip, and 8 =7. By Taylor
expansion, the amplitude sum becomes E, = TEj1/1 -1 =
E,(1+7), where T =1-r% Thus, the final output intensity
along the port A is as follows:

Iy=Iy(1+71)% (10)

where I, = E,E% and I, = |E,|*. For a high reflectance cavity
mirror, i.e., r ~ 1, the upper bound of the output intensity I,
becomes quadruple that of the input intensity I,. For a
nearly transparent cavity mirror (r ~ 0), the output intensity
I, satisfies the lower bound of I,. In other words, I, <I, <
4], results in the cavity CBW at ¢ = (2n+ 1)7, otherwise,
I, =0 as shown in Figure 3(c). Due to the extremely low
duty cycle in I ,, the maximum I, does not violate the energy
conservation law. This quadrupled I, resembles Young’s
double-slit experiments, where infinite orders of Aqpy as a
superposed light source are additionally involved. For equa-
tion Eg, it is zero due to asymmetric sine function at ¢ = 7.
However, there are nonzero sidebands in I with intensity
maxima of I, (see Figures 3(e) and 3(f)). Details are pre-
sented in Section 5 of the Supplementary Information.

3.1. Cavity CBW vs. Fabry-Perot Interferometer. Figure 4
shows numerical calculations of the output field intensity
I, for both FPI limited by classical optics of Rayleigh crite-
rion and the present cavity CBW in Figure 2. Figures 4(a)
and 4(b) show the output of FPI, resulting in maxima at ¢
= 2n7, whose spectral width (resolution) of the transmitted
light (I,) is proportional to the coefficient of finesse F of the
cavity: I, = 1/[1 + F sin*(¢)] and F = 4r%/(1 - 1*)* [26]. The
spectral width of the output I, becomes narrower as the
reflectance coefficient r or coefficient of finesse F increases
as shown in Figure 4(b), whose phase-resolution limit is
given by A,,=4sin"!(VF'). This phase resolution
enhancement is due to multiwave interference among dis-
crete phases at a fixed wavelength A,.

On the contrary, Figures 4(c) and 4(d) are for the cavity
CBW discussed in Figure 3 for various r. For the comparison
purpose, the output intensities are normalized, otherwise,
four times higher as shown in equation (10). Unlike FPI in
Figures 4(a) and 4(b), the maximally transmitted light I,
has different conditions at ¢@=(2n+1)7 as shown in
Figure 3. Moreover, the spectral resolution in Figure 4(d) is



three times higher than that in Figure 4(b) (see the insets).
The higher resolution in Figure 4(d) cannot be obtained by
classical optics limited by FPI. Thus, the cavity CBW proves
a nonclassical feature beyond the classical limit of FPL This
is the novelty of the present cavity CBW for its potential
applications for QSI.

4. Discussion

The mechanism of the cavity-CBW in Figure 2 is unique and
completely different from conventional ones in both classical
and quantum physics, where the nonclassical light genera-
tion of CBWs is based on its wave nature of quantum
mechanics using double path superposition in an asymmet-
rically coupled-MZI pair. Thus, a linear expansion (or serial
connection) of asymmetrically coupled-MZI pairs results in
higher-order CBWs. The novelty of this paper is not only
new physics of quantum feature but also its potential appli-
cations to a quantum Sagnac interferometer, in which the
output fields are phase-resolution enhanced via multisuper-
position among all ordered CBWs. Compared with PBW
based on entangled photon pairs, whose measurement can-
not be a single shot due to intrinsic properties of quantum
superposition of a particle nature of quantum mechanics,
the present CBW is definitely for a single shot measurement
due to coherence optics. For PBW-based quantum sensing,
not only a higher N of a NOON state but also repeated mea-
surements are necessary. Thus, critical limitations of higher-
order entangled photon pair generations and statistical mea-
surements in conventional quantum metrology can be over-
come with CBWs.

Over the past few decades, the development of high
accuracy inertial navigation systems has been an active sub-
ject in the areas of ring laser gyroscope [31-33] and atom
interferometry [21, 34, 35]. As limited by SI, the size of a
ring gyro varies from ~1 [32] to ~10° (UG-2) m? [33]
depending on the purpose. The ring cavity stability has been
continuously improved to keep the thermal expansion bel-

low 10® K, resulting in a random walk error of n°/vh
[32]. Such a high stability in larger ring gyros can be com-
pared with its smaller counterparts such as Honeywell GG
1839, whose stability is 200 p°/~/h.

On the contrary, the atom interferometer Sagnac gyro-
scope has determined Earth’s rotation rate in the order of
30 ppm for absolute geodetic rotation measurements [34].
The importance of Earth rotation sensing in geodesy and
inertial navigation is its usefulness in detecting phenomena
such as Chandler wobble which causes polar motion due
to unstable Earth rotation at very low frequencies (26 nHz).
Currently, the sensitivity of atom interferometry is ~10
“rad/\/s [21]. Using a G ring whose cavity quality factor is
10*2, the theoretical estimation of sensitivity is AQ/Qy <
1078, where AQ is the quantum noise of the resolution and
Q) is the Earth rotation rate [33]. Because the optical cavity
for Figure 2 is basically the same as any ring cavity gyros for
stability and maintenance, the present scheme of cavity
CBW can be applied for conventional SI in geodesy and
inertial navigation systems with the state-of-the-art of preex-
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isting technologies, resulting in a compact and portable unit
with at least three times enhanced phase resolution and
four-times higher sensitivity owing to the nonclassical fea-
tures of CBW as shown in Figure 4.

In conclusion, a novel scheme of cavity CBW was pro-
posed, analyzed, and discussed for potential applications of
a quantum Sagnac interferometer (QSI) using an optical
cavity, where the nonclassical feature of CBW is equivalent
to PBW. In a rotating frame, the phase resolution of the cav-
ity CBW overcome the classical limit of cavity SI based on
the same Q factor or finesse of an optical cavity. The phase
resolution of QSI was directly calculated for the cavity
CBW scheme and compared with the classical counterpart
of FPI for the same cavity finesse. The enhanced phase reso-
lution in the cavity CBW was due to the quantum superpo-
sition among all ordered CBWs. The signal-to-noise ratio
was enhanced by four times at least without considering a
quantum gain of Heisenberg limit as discussed in Figure 3
and equation (10). Therefore, this work is of interest to the
communities of both classical and quantum physics for the
implementation of quantum metrology without entangled
photons or squeezed light. The coherently driven nonclassi-
cal features in the cavity CBW can be directly applied to QSI,
resulting in both enhanced resolution and sensitivity. The
design of the cavity CBW is purely classical with commer-
cially available laser light, but offers higher phase resolution
far beyond the classical limit. The cavity CBW may provide
new opportunities in coherence-quantum metrology in the
fields of gyroscopes, inertial navigation, lithography, and
geodesy. Owing to the substantial enhancement factor in
the phase resolution, the cavity CBW can also be applied
for nanophotonic optical gyro platforms [35], which are
used in drones and robots with stand-alone inertial naviga-
tion systems.
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